

INVERTER PROGRAMMING AND REWIRING GUIDE FOR REPLACEMENT OF INVERTERS

Function values for the Fuji / GE inverters FRN00 G9D- UX / D55XXX V-S part numbers 13830XX:

$00=1$ freq. = voltage input
$01=1$ external run stop
$02=60 \mathrm{~Hz}$ max. frequency
$03=60 \mathrm{~Hz}$ base frequency (this is not min. frequency)
$04=200,208,220,230($ not 240), 380, 415, 420 (not $440-480$) output voltage
$05=10$ accel. time (seconds)
$06=10$ decel. time
$07=1.0$ Torque boost limit
$08=0$ four pole current limiting inactive for two pole motors
$09=$ ignore - limit for disabled four pole current limiting (not used)
$10=0$ don't auto-restart after power failure, but set the alarm
$11=70 \mathrm{~Hz}$ high frequency limiter
$12=0 \mathrm{~Hz}$ low frequency limiter
$13=0 \mathrm{~Hz}$ bias frequency
$14=100 \%$ gain for frequency setting from signal
$15=180 \%$ acceleration torque limiting
$16=150 \%$ deceleration torque limiting,
$17=0 \mathrm{~Hz}$ starting frequency for DC injection breaking (not used)
$18=0 \%$ strength of DC injection breaking (not used)
$19=0$ seconds - operating time for DC injection breaking (not used)
$20=0 \mathrm{~Hz}$ part of the multistep frequency pattern acceleration (not used)
$21-26=0 \mathrm{~Hz}$ part of the multistep pattern (not used)
$27=1$ internal thermal overload relay active
$28=0.0 \mathrm{~Hz}$ slip compensation control
$29=0$ Torque vector control inactive
$30=2$ number of motor poles
$31=1$ open next block of functions
$32=0000$ XI-X4 input terminal functions (not used)
$33=10.0 \mathrm{sec}$. accel. \#2 time (not used)
$34=10.0$ sec. decel. \#2 time (not used)
$35=15.0$ sec. accel. \#3 time (not used)
$36=15.0 \mathrm{sec}$. decel. \#3 time (not used)
$37=3.0 \mathrm{sec}$. accel. \#4 time (not used)
$38=3.0$ sec. decel. \#4 time (not used)
$39=60 \mathrm{~Hz}$ base freq. \#2 (not used)
$40=230 \mathrm{~V}$ for $200-240 \mathrm{~V}$ range, 420 V for $380-480 \mathrm{~V}$ range for 2nd motor (not used)
$41=1.0$ Torque boost for 2nd motor (not used)
$42=1$ open next block of functions
$43=24$ pulse rate multiplier for FMP frequency monitor output (not used)
$44=100$ Voltage adjust for FMP frequency monitor output (not used)
$45=100$ Voltage adjust for FMA frequency monitor output (not used)
$46=0$ FMA output function $=$ frequency (not used)
$47=01234 \mathrm{YI}-\mathrm{Y} 5$ output terminal functions
$48=2.5 \mathrm{~Hz}$ frequency equivalence hysteresis (not used)
$49=6 \mathrm{~Hz}$ low freq. detect level (Hz)
$50=1 \mathrm{~Hz}$ low freq. detect hysteresis
$51=6$ for $3 \mathrm{HP}, 10$ for $5 \mathrm{HP}, 14$ for 7.5 HP max. current limit (Amps.)
$52=1$ open next block of functions
$53=0 \mathrm{~Hz}$ jump freq. \#1 (not used)
$54=0 \mathrm{~Hz}$ jump freq. \#2 (not used)
$55=0 \mathrm{~Hz}$ jump freq. \#3 (not used)
$56=3 \mathrm{~Hz}$ jump freq. hysteresis (not used)
$57=0.5 \mathrm{~Hz}$ start frequency
$58=0.0 \mathrm{sec}$. holding time
$59=0.05 \mathrm{sec}$. signal filter
$60=1$ open next block of functions
$61=0$ LED monitor displays output frequency
$62=0$ when stopped monitor displays set point
$63=57$ multiplier for conveyor speed display
$64=2$ display frequency and current
$65=0$ special pattern operation inactive
$66-72=0$ seconds pattern stage I-7 (not used)
73 = 0 linear acceleration for special pattern (not used)
$74=0$ special functions (not used)
$75=0$ erergy saving operation inactive
$76=0$ reverse phase frequency lock inactive
$77=0$ do not restore factory settings at this time
$78=1$ language $=$ English ($0=$ Japanese, $2=$ Spanish, $3=$ French $)$
$79=5$ average intensity level on LCD monitor
$80=1$ open next block of functions
$81=10$ set carrier frequency to 15 KHz
$82=5$ output power delay time after input power applied (seconds)
$83=0$ Use function 6 setting to pull in motor after momentary power drop out
$84=0$ do not auto reset
$85=5$ sec. time between autoresets (not used)
$86=1$ standard capacity for motor 1
87 = ignore (not used) single motor rated current
88 = ignore (not used) single motor no load current
89 = ignore (not used) second motor rated current
$90=0$ motor 1 tuning inactive
91 = ignore (not used) set \%R1 motor 1 tuning
92 = ignore (not used) set \%X1 motor 1 tuning
$93=$ ignore (not used) reserved for manufacturer
94 = ignore (not used) reserved for manufacturer
$95=0$ allow functions to be modified

Function values for the Magnetek / IDM inverters GPD-XXX / PC3 V-S part numbers 13036XX, 13037XX:

```
An-01 = 0.00 Hz frequency reference #1
An-02 = 0.00 Hz frequency reference #2
An-03 = 0.00 Hz frequency reference #3
An-04 = 0.00 Hz frequency reference #4
An-05 = 0.00 Hz frequency reference #5
An-06 = 0.00 Hz frequency reference #6
An-07 = 0.00 Hz frequency reference #7
An-08 = 0.00 Hz frequency reference #8
An-09 = 6.00 Hz jog reference
bn-01 = 10.0 seconds acceleration time 1
bn-02 = 10.0 seconds deceleration time 1
bn-03 = 10.0 seconds accel. time 2
bn-04 = 10.0 seconds decel. time 2
bn-05 = 100 % frequency command gain
bn-06 = 0 % frequency command bias
bn-07 = 1.0 torque compensation gain
bn-08 = 0.0 % slip compensation gain
bn-09 = 80 % Energy saving gain
bn-10 = 1 monitor displays frequency while running motors
bn-11 = 1.00 Analog monitor channel 1 gain
bn-12 = 0.5 Analog monitor channel 2 gain
Sn-01 = 03 FOR 3 HP, 04 for 5 HP, 05 for 7.5 HP inverter power selection
Sn-02 = 0F V/F pattern set by Cn-02 through Cn-08
Sn-03 = 0000 read / set all constants
Sn-04 = 0000 ramp to stop, run/stop from external signal, external frequency command
Sn-05 = 0000 use non keyboard signals
Sn-06 = 0011 "S" curve at accel./ decel. with 1 sec delay, use internal freq. Ref.
Sn-07 = 0000 Over torque settings
Sn-08 = 0000 run from on board option
Sn-09 = 0000 reserved for manufacturer
Sn-10 = 0000 enable stall prevention
Sn-11 = 0000 breaking resistor / fault contacts
Sn-12 = 0100 ramp to stop on external fault input
Sn-13 = 0000 reserved for manufacturer
Sn-14 = 0000 electronic thermal overload relay enabled
Sn-15 = 03 terminal #5 = auto / manual select
Sn-16 = 04 terminal #6 = multistep frequency select
Sn-17 = 07 terminal #7 = use bn-01 through bn-04 for accel./decel. times
Sn-18 = 08 terminal #8 = motors on/off
Sn-19 = 00 terminal #16 = analog input for frequency out
Sn-20 = 00 terminals #9 & #10 output contacts closed while in operation
Sn-21 = 0l terminals #25 & #27 output transistor "on" when output freq. = 0 Hz
Sn-22 = 02 terminals #26 & #27 output transistor "on" when output freq. matches Cn-22
Sn-23 = reserved for manufacturer
Sn-24 = reserved for manufacturer
Sn-25 = 0000 enable command input filter
Sn-26 = 0000 use BCD for digital frequency command (not used)
Sn-27 = 0010 pulse monitor option gain (not used)
Sn-28 = 0100 monitor channel 1 = output frequency, monitor channel 2 = ref. freq.
Cn-01 = 230.0V for 200V-240V (240V requires buck transformer) Voltage limit
Cn-02 = 60.0 Hz V/F pattern max. frequency
Cn-03 = 200.0V V/F pattern max. voltage
Cn-04 = 60.0 Hz V/F pattern max. frequency
Cn-05 = 3.0 Hz V/F pattern midpoint frequency
Cn-06 = 13V V/F pattern midpoint Voltage
Cn-07 = 1.5 Hz V/F pattern start frequency
```

```
Cn-08 = 7V V/F pattern start volts
Cn-09 = 8.5 A for 3 HP, 14.1 A for 5 HP, 19.6 A for 7.5 HP motor rated current
Cn-10 = 1.5 Hz start frequency for DC injection breaking
Cn-11 = 50 % DC injection breaking current
Cn-12 = 0.0 % DC injection breaking at stop
Cn-13 = 0.0 sec. start time for DC injection breaking
Cn-14 = 100 % frequency command upper limit
Cn-15 = 0 % frequency command lower limit
Cn-16 = 0.0 Hz skip frequency #1 (not used)
Cn-17 = 0.0 Hz skip frequency #2 (not used)
Cn-18 = 0.0 Hz skip frequency #3 (not used)
Cn-19 = 1.0 Hz dead band around skip frequency (not used)
Cn-20 = 0 display output frequency
Cn-21 = 0.0 Hz speed coincidence frequency
Cn-22 = 2.0 Hz speed coincidence bandwidth
Cn-23 = 15.0 KHz carrier frequency upper limit
Cn-24 = 15.0 KHz carrier frequency lower limit
Cn-25 = 00 frequency proportional gain
Cn-26 = 160 % over torque detection level
Cn-27 = 0.1 seconds over torque detection time
Cn-28 = 170 % accel. stall prevention level - constant torque
Cn-29 = 50 % accel. stall prevention level - constant HP
Cn-30 = 160 % stall prevention level at set point
Cn-31 = unknown factory setting - Ohms motor to motor cable resistance
Cn-32 = unknown factory setting - Watts torque compensation iron loss
Cn-33 = unknown factory setting - Volts torque compensation limiter
Cn-34 = 30 % motor no load current
Cn-35 = 2.0 seconds slip compensation first order lag
Cn-36 = 0 number of autorestart attempts
Cn-37 = 0.0 seconds momentary power failure ride through time
Cn-38 = 150 % speed search operation level
Cn-39 = 2.0 sec. speed search decel. time
Cn-40 = unknown factory setting mm. base block time
Cn-41 = 100 % V/F during speed search
Cn-42 = 0.3 seconds Voltage recovery time
Un-0l = display only - frequency reference (Hz)
Un-02 = display only - output frequency (Hz)
Un-03 = display only - Output current (Amps)
Un-04 = display only -Voltage reference (V)
Un-05 = display only - DC Voltage bus (Vpk to neutral)
Un-06 = display only - Output power (KW)
Un-07 = display only - input terminal status
Un-08 = display only - Output terminal status
Un-09 = display only - LED lamp check (8.8.8.8.8.)
Un-l0 = display only - PROM #
```


Function values for the IDM mini-inverters CIMR-PCU-XXXX V-S part number 13798XX:

```
00 = 3 all functions available for setting
0l = 0000 run from external controls
02 = 60.0 Hz max. frequency
03 = 230.OV max. Voltage
04 = 60.0 Hz frequency at max. voltage
05 = 3.0 Hz midpoint frequency
06 = 12.OV midpoint Voltage
07 = 1.5 Hz mm. frequency
08 = 7V mm. Voltage
09 = 30.0 seconds first acceleration time
10 = 30.0 sec. first deceleration time
11 = 10.0 sec. second acceleration time (not used)
12 = 10.0 sec. second deceleration time
13 = 0.0 Hz reference frequency #1
14 = 0.0 Hz reference frequency #2
15 = 0.0 Hz reference frequency #3
16 = 0.0 Hz reference frequency #4
17 = 6.0 Hz jog reference frequency
18 = 0000 electronic thermal overload relay enabled
19 = 8.5 A for 3 HP, 14.1 A for 5 HP motor rated current
20 = 0001 enable stall prevention
21 = 0000 analog monitor follows output frequency
22 = 1.00 reference frequency gain
23 = 0.00 reference frequency bias
24 = 100 % frequency upper limit
25 = 0 % frequency lower limit
26 = 50 % DC injection braking current
27 = 0.0 sec. stop time for DC injection braking
28 = 0.0 sec. start time for DC injection braking
29 = 1.0 gain for automatic torque boost
30 = 170 % stall prevention level while running
31 = 160 % stall prevention level while accelerating
32 = 13 alarm reset when terminal #3 connected to ground
33 = 1 external fault (stop) if terminal #4 connected to ground
34 = 3 external fault (stop) if terminal #5 disconnected from ground
35 = 0 analog input = frequency gain / frequency set point
36 = 3 terminals FLT energized if output frequency greater than or equal detect freq.
37 = 0 terminal #13 closed while running
38 = 1 terminal #14 closed if output frequency = detect frequency (function 39)
39 = 5.0 Hz detection frequency
40 = 0000 over torque detection
41 = 160 % over torque detection level
42 = 0.1 sec. over torque detection time
43 = 6 carrier frequency = 15 KHz
44 = reserved for manufacturer
45 = 1.00 analog monitor gain
46 = 0000 discontinue operation after momentary power loss
47 = 0 number of restart attempts after fault
48 = display only = latest fault
49 = display only = PROM number
50 = 0.0 Hz skip frequency
51 = 1.0 Hz skip range around skip frequency
52 = reserved for manufacturer
53 = reserved for manufacturer
54 = reserved for manufacturer
55 = reserved for manufacturer
```

56 = reserved for manufacturer 57 = reserved for manufacturer
58 = reserved for manufacturer
59 = reserved for manufacturer

Function values for the IDM mini-inverters CIMR-J7CU-XXXX V-S part numbers 14514XX:

```
01 = 1 all functions available for setting
02 = 1 run from external controls
03 = 2 analog input (0 - 10V) = frequency gain / frequency set point
04 = 0 decelerate to a stop (not coast to stop)
05 = 1 disable reverse direction
06 = 0 enable "stop" key / command
07 = 1 set freq. By keypad (not used)
08 = 1 disable freq. Setting by "enter key" (not used)
09 = 60.0 Hz maximum output frequency
10 = 230 V. maximum output voltage
11 = 60.0 Hz maximum frequency output at max. Voltage
12 = 30.0 Hz middle output frequency
13 = 50 V. middle frequency voltage
14 = 1.5 Hz minimum output frequency
15 = 10 v. minimum output voltage
16 = 10.0 Seconds Acceleration time # 1
17 = 10.0 S. Deceleration time # 1
18 = 10.0 S. Acceleration time # 2
19 = 10.0 S. Deceleration time # 2
20 = 0 no "S-curve" accel. / decel. Characteristic provided
21 = 0.0 Hz multi-step speed select frequency reference # 1 (not used)
22 = 0.0 Hz multi-step speed select frequency reference # 2 (not used)
23 = 0.0 Hz multi-step speed select frequency reference # 3 (not used)
24 = 0.0 Hz multi-step speed select frequency reference # 4 (not used)
25 = 0.0 Hz multi-step speed select frequency reference # 5 (not used)
26 = 0.0 Hz multi-step speed select frequency reference # 6 (not used)
27 = 0.0 Hz multi-step speed select frequency reference # 7 (not used)
28 = 0.0 Hz multi-step speed select frequency reference # 8 (not used)
29 = 6.0 Hz jog frequency reference
30 = 100 % frequency reference upper limit
31 = 0 % frequency reference lower limit
32 = 8.5 A (3hp/2.2kW) or 14.1 A (5hp/3.7kW) maximum current limit
33 = 0 electronic thermal overload applied to general purpose motors
34 = 8 minutes electronic thermal relay time delay
35 = 0 inverter cooling fan operates only when inverter is in run mode
36 = 2 input S2 = reverse run (not used)
37 = 5 input S3 = fault reset
38 = 3 input S4 = external fault input (connect to SC if fault - not used)
39 = 6 input S5 = activate sepeed reference # 1 (not used)
40 = 5 output contact MA closes when the output frequency is less than 5Hz (n58)
41 = 100 % of max. analog input voltage (n03) = maximim output frequency (n09)
42 = 0 % of max frequency (n09) when analog input voltage = 0 Volts
43 = 2.00 seconds analog frequency reference filter time constant
44 = 0 output a frequency to the monitor terminals (not used)
45 = 1.00 gain (multiplier) signal at monitor terminals
46 = 4 set carrier frequency to 10 kHz
47 = 1 automatically restart after a momentary power drop out if the run relay is
    still energized.
48 = 0 do not try to automatically restart after a fault
49 = 0.0 Hz skip frequency # 1
50 = 0.0 Hz skip frequency # 2
51 = 0.0 Hz skip frequency band width
52 = 50% DC injection braking current
53 = 0.0 seconds DC injection braking time at stop
5 4 = 0 . 0 ~ s e c o n d s ~ D C ~ i n j e c t i o n ~ b r a k i n g ~ t i m e ~ a t ~ s t a r t ~
55 = 0 provide stall prevention during deceleration
```

```
56 = 170 % (of inverter max current) stall prevention current limit for acceleration
57 = 160 % (of inverter max current) stall prevention current limit during run
58 = 5 Hz frequency level detected by n40 above & output to MA terminal
59 = 0 over torque not detected
60 = 160 % over torque detection level
61 = 0.1 seconds over torque detection time delay
62 = 0 output frequency is not recorded during a "hold" command
63 = 1.0 torque compensation gain
64 = 2.9 Hz (3hp/2.2kW) or 3.3 Hz (5hp/3.7kW) rated slip for motors
65 = 35% (3hp/2.2kW) or 32% (5hp/3.7kW) motor no load current
66 = 1.0 motor slip compensation gain
67 = 2.0 seconds motor slip compensation primary delay time
68 = 0 timeover detection not used
69 = 0 communications frequency reference (not used)
70 = 0 slave address (not used)
71 = 2 initial baud rate (not used)
72 = 0 parity bits (not used)
73 = 10 miliseconds waiting time for "send" signal
74 = 0 RTS/CTS disabled (not used)
75 = - (not available for setting)
76 = - (not available for setting)
77 = - (not available for setting)
78 = - (not available for setting)
79 = - (not available for setting)
```


Function values for the AC Tech series SCF V-S part numbers 14514XX:

```
01 = 00 for input voltages of 200 - 208,
    = 01 for input voltages of 220 - 240
02 = 04 set carrier frequency to 10 kHz
03 = 01 normal start up
04 = 04 decelerate with DC injection braking
0 5 = \underline { 0 3 } \text { use 0 - 10V input to control output}
06 = \overline{01 TB-14 not assigned}
07 = not defined
08 = 01 TB-30 analog output disabled
09 = 01 TB-31 analog output disabled
10 = 01 TB-13A input disabled
11 = 01 TB-13B input disabled
12 = 01 TB-13C input disabled
1 3 = 0 2 ~ N P N ~ o p e n ~ c o l l e c t o r ~ a t ~ T B - 1 5 ~ c o n d u c t s ~ c u r r e n t ~ t o ~ g r o u n d ~ i f ~ i n v e r t r ~ i s ~ r u n n i n g
1 4 = \overline { 0 1 } \text { control is through the terminal strip only}
15 = 01 disable serial communications
16 = \overline{01}}\mathrm{ keypad speed 0.1 Hz
17 = \overline{01}}\mathrm{ rotate forward only
18 = 03 range select, set n19, n20,n21 for 1 second increments (may not be available)
1 9 = 1 0 ~ s e c o n d s ~ a c c e l e r a t i o n ~ t i m e
20 = \overline{10}}\mathrm{ seconds deceleration time
21 = \overline{00}}\mathrm{ seconds of DC injection braking during deceleration
22 = 00 % of max voltage for DC braking
23 = 00 Hz minimum frequency
24 = 60 Hz maximum frequency
25 = 150% of max current - current limit
26 = 100% of max current - motor overload
27 = 60 Hz base frequency
28 = 1% of base frequency - fixed boost
29 = 00 % of base frequency acceleration boost
30 = 00 % of base frequency slip compensation
31 = 00 Hz preset speed # 1
32 = 00 Hz preset speed # 2
33 = 00 Hz preset speed # 3
34 = 00 Hz preset speed # 4
35 = 00 Hz preset speed # 5
36 = 00 Hz preset speed # 6
37 = 00 Hz preset speed # 7
38 = 0.0 Hz skip bandwidth
39 = 0.0 speed scaling gain
40 = 60 Hz frequency scale at TB-30
41 = 200% load scaling at TB-30 and TB-31 for load outputs
42 = 20.0 Sec. Accel. / decel. #2
43 = 1 serial address
44 = 000 disable password. Set at AC Tech to 225 (or 1225)
45 = not defined
46 = not defined
47 = 01 do not clear error history
48 = 01 use user settings (not OEM module or AC Tech settings)
49 = not defined
50 = - fault history - view only
51 = - software codes - view only
52 = - DC Bus voltage - view only
53 = - motor voltage - view only
54 = - load current - view only
55 = - 0 - 10 Volt input - view only
```

```
56 = - 4 - 20 mA input - view only
57 = - TB strip status - view only
58 = - keypad status - view only
59 = - TB-30 output - view only
60 = - TB-31 output - view only
```


Function values for the Fuji / GE inverters 6KP11XXXXXX1A1 / D66XXX V-S part number1465101/TDA2036:

FOO $=0$ all function data can be changed
F01 $=1$ use voltage input (pins $11 \& 12$) to set frequency
F02 $=1 \mathrm{run} /$ stop from screw terminals - leave stop button active
F03 $=60 \mathrm{~Hz}$. Maximum output frequency
F04 $=60 \mathrm{~Hz}$ Base output frequency range
F05 $=220 \mathrm{~V}$ rated output voltage
F06 = 220 V maximum output voltage
F07 $=10$ Seconds acceleration time
F08 = 10 S deceleration time
F09 $=1.0$ Torque boost
F10 $=1$ internal thermal overload relay active
F11 $=135 \%$ (of rated drive current) thermal overload relay current level
F12 $=0.5$ Minutes time delay of thermal overload relay
F13 $=0$ deactivate internal braking resistor
F14 $=0$ immediate shutdown on under voltage, motors coast to a stop
F15 $=70 \mathrm{~Hz}$ upper limit frequency
F16 $=0 \mathrm{~Hz}$ lower limit frequency
$\mathrm{F} 17=100 \%$ of max. frequency for +10 V input (gain setting)
F18 $=0$ bias frequency for positive rotation
F19 $=$ not used
F20 $=0 \mathrm{~Hz}$ DC injection brake starts at 0 Hz (not used)
F21 $=0 \%$ of output current available for DC injection braking (not used)
F22 $=0.0 \mathrm{~S}$ of operating time for DC injection braking (not used)
F23 $=0.5 \mathrm{~Hz}$ starting frequency
$\mathrm{F} 24=0.0 \mathrm{~S}$ hold time for start frequency
F25 $=0.4 \mathrm{~Hz}$ stop frequency at end of deceleration
F26 $=15 \mathrm{kHz}$ carrier frequency
F27 $=0$ motor sound adjustment - available only for carrier frequencies less than 7 kHz
F28 = not used
F29 = not used
F30 $=100 \%$ gain of DC output monitor voltage sent to terminal FMA as set by F31
F31 $=0$ set monitor output (terminal FMA) to indicate output frequency
F32 $=$ not used
F33 $=1440$ pulses per second - PWM output to terminal FMP (another output monitor)
F34 $=0 \%$ of full scale offset to FMA - the pulse frequency varies directly according to function F35
F35 $=0-$ FMA terminal monitors output frequency
F36 = 0 - de-energize the alarm relay when power drops out. (fail safe - normally energized)
F37 = not used
F38 $=$ not used
F39 = not used
F40 = 999 \% disable drive torque limiting
F41 = 999 \% disable braking torque limiting
F42 $=0$ disable torque vector control (not effective with multiple motors)
E01 $=8$ - alarm reset if terminal X1 connected to ground (CM)
E02 $=8$ - alarm reset if terminal X2 connected to ground (CM)
E03 $=8$ - alarm reset if terminal X3 connected to ground (CM)
E04 $=8$ - alarm reset if terminal X4 connected to ground (CM)
E05 $=8$ - alarm reset if terminal X5 connected to ground (CM)
E06 = 8- alarm reset if terminal X6 connected to ground (CM)
E07 $=8$ - alarm reset if terminal X7 connected to ground (CM)
E08 =8 - alarm reset if terminal X8 connected to ground (CM)
E09 $=8$ - alarm reset if terminal X9 connected to ground (CM)
$\mathrm{E} 10=6.0 \mathrm{~S}$ acceleration time \#2 (for profile) - not used
E11 = 6.0 S deceleration time \#2 (for profile) - not used
E 12 = 6.0 S acceleration time \#3 (for profile) - not used

E13 $=6.0$ S deceleration time \#3 (for profile) - not used
$\mathrm{E} 14=6.0 \mathrm{~S}$ acceleration time \#4 (for profile) - not used
$\mathrm{E} 15=6.0 \mathrm{~S}$ deceleration time \#4 (for profile) - not used
E16 = 999 \% disable drive torque limiting \#2
E17 = 999 \% disable braking torque limiting \#2
$\mathrm{E} 18=$ not used
E19 $=$ not used
E20 $=0$ - output of terminal Y1 to CMY conducts if in RUN mode - not used
E21 $=1$ - output of terminal Y2 to CMY conducts if the out output is at running frequency (E30) - not used
E22 $=2-$ output of terminal Y3 to CMY conducts if output frequency above 5 Hz (E31 \& E32)
E23 $=7$ - output of terminal Y4 to CMY conducts if thermal over load is about to trip (E33 \& E34) - not used
E24 $=15$ - output of terminal Y5 to CMY conducts if FWD or REV command received - not used
E25 $=$ not used
E26 = not used
E27 = not used
$\mathrm{E} 28=$ not used
E29 = not used
$\mathrm{E} 30=2.5 \mathrm{~Hz}-$ "at set point" detection band width
E31 $=5 \mathrm{~Hz}$ output frequency detection point (see E22)
E32 $=0.2 \mathrm{~Hz}$ hysteresis for E31 detection point
E33 $=0$ use thermal overload relay to activate early warning (E23)
E34 $=22 \mathrm{~A}=100 \%$ activate early warning (E23) when overload relay current is exceeded but before timeout
E35 $=10.0$ S delay time for E23 alarm if output current level is exceeded - not used
E36 $=60 \mathrm{~Hz}$ - ferquency detection level \#2 - not used
E37 $=22 \mathrm{~A}=100 \% 2^{\text {nd }}$ early warning activation level - not used
E38 $=$ not used
E39 $=$ not used
$\mathrm{E} 40=100.00 \%$ max. percent of set point can be displayed on front panel
$\mathrm{E} 41=0.00 \%$ min. percent of set point can be displayed on front panel
E42 $=0.5 \mathrm{~S}$ between LED display updates (flicker filter)
E43 $=0$ LED display set frequency when stopped, actual frequency while running
E44 $=0$ LED display set frequency when stopped, actual frequency while running
E45 $=0$ LCD displays status of operation
E46 $=1$ display information in english ($0=$ Japanese, $2=$ German, $3=$ French, $4=$ Spanish, $5=$ Italian $)$
E47 $=5$ set LCD contrast
$\mathrm{C} 01=0 \mathrm{~Hz}$ Jump frequency \#1 - not used
C02 = 0 Hz Jump frequency \#2 - not used
C03 $=0 \mathrm{~Hz}$ Jump frequency \#3-not used
C04 $=3 \mathrm{~Hz}$ Jump frequency hysteresis - not used
$\mathrm{C} 05=0.00 \mathrm{~Hz}$ multi-step frequency \#1 (profile) - not used
$\mathrm{C} 06=0.00 \mathrm{~Hz}$ multi-step frequency \#2 (profile) - not used
$\mathrm{C} 07=0.00 \mathrm{~Hz}$ multi-step frequency \#3 (profile) - not used
$\mathrm{C} 08=0.00 \mathrm{~Hz}$ multi-step frequency \#4 (profile) - not used
C09 $=0.00 \mathrm{~Hz}$ multi-step frequency \#5 (profile) - not used
C10 $=0.00 \mathrm{~Hz}$ multi-step frequency \#6 (profile) - not used
C11 $=0.00 \mathrm{~Hz}$ multi-step frequency \#7 (profile) - not used
$\mathrm{C} 12=0.00 \mathrm{~Hz}$ multi-step frequency \#8 (profile) - not used
C13 $=0.00 \mathrm{~Hz}$ multi-step frequency \#9 (profile) - not used
$\mathrm{C} 14=0.00 \mathrm{~Hz}$ multi-step frequency \#10 (profile) - not used
$\mathrm{C} 15=0.00 \mathrm{~Hz}$ multi-step frequency \#11 (profile) - not used
C16 $=0.00 \mathrm{~Hz}$ multi-step frequency \#12 (profile) - not used
C17 $=0.00 \mathrm{~Hz}$ multi-step frequency \#13 (profile) - not used
$\mathrm{C} 18=0.00 \mathrm{~Hz} 0.00$ multi-step frequency \#14 (profile) - not used
C19 $=0.00 \mathrm{~Hz} 0.00$ multi-step frequency \#15 (profile) - not used
$\mathrm{C} 20=5.00 \mathrm{~Hz}$ move frequency for jogging
C21 $=0$ if set for pattern operation (F01=10) do one pattern then stop - not used

```
C22 \(=0.00\) F1 pattern stage \#1 0.00 Seconds, Forward rotation, accelerate - not used
C23 \(=0.00\) F1 pattern stage \#2 0.00 Seconds, Forward rotation, accelerate - not used
C24 \(=0.00\) F1 pattern stage \#3 0.00 Seconds, Forward rotation, accelerate - not used
C25 = 0.00 F1 pattern stage \#4 0.00 Seconds, Forward rotation, accelerate - not used
\(\mathrm{C} 26=0.00 \mathrm{~F} 1\) pattern stage \#5 0.00 Seconds, Forward rotation, accelerate - not used
C27 = 0.00 F1 pattern stage \#6 0.00 Seconds, Forward rotation, accelerate - not used
C28 = 0.00 F1 pattern stage \#7 0.00 Seconds, Forward rotation, accelerate - not used
C29 = not used
\(\mathrm{C} 30=2\) set second frequency by \(4-20 \mathrm{~mA}\) to terminal \(\mathrm{C}-\) not used
C31 \(=0.0\) \% offset to analog input at terminal 12
C32 \(=100.0\) \% offset to analog input at terminal C1 - not used
C33 \(=1.00\) Second analog input filter sampling time - noise filter
P01 = 2 number of motor poles
P02 = default 8.7 kW 7.5 hp motor rated power
P03 = default 22 A motor rated current
P04 \(=0\) deactivate motor tuning (ineffective for multiple motors)
P05 = 0 deactivate continuous motor tuning
P06 = default (6.23) A motor no load current
P07 = default (2.65)\% motor constant
P08 = default (28.91)\% motor / drive impedance
P09 \(=0.00 \mathrm{~Hz}\) motor slip compensation
H03 \(=0\) disabled -1 would reset ALL functions to factory default
H04 = 0 set auto reset counter value - not used
H05 = 5 S wait before restart after reset - not used
H06 = 0 run internal cooling fan continuously
H07 = 0 use straight line acceleration / deceleration (not soft start " S " pattern)
H08 = 1 lock out reverse rotation
\(\mathrm{H} 09=0\) do not restart a motor until it is stopped
H10 = 0 deactivate "energy save" tuning
\(\mathrm{H} 11=0\) decelerate to a stop using the H 07 set pattern
\(\mathrm{H} 12=1\) activate internal over current limiting
\(\mathrm{H} 13=0.1 \mathrm{~S}\) power line drop out ride through time
\(\mathrm{H} 14=10.00 \mathrm{~Hz} /\) S rate of change to synchronize slowing down motor with drive
H15 = 235 auto restart voltage - not used
H16 = 999 in the event of a power drop out, hold the last command until power is restored (or bus power drops out)
\(\mathrm{H} 17=\) not used
H18 = 0 deactivate analog input torque control
H19 = 0 deactivate "active drive" function - leave acceleration time as set above
H20 = 0 deactivate PID motor control
H21 = 1 use 4-20mA input for motor speed feed back for PID motor control - not used
\(\mathrm{H} 22=0.1\) proportional gain for PID motor control - not used
H23 \(=0.0\) integral gain for PID motor control - not used
H24 \(=0.00\) differential gain for PID motor control - not used
H25 = 0.5 S feed back filter / sample time for PID motor control - not used
H26 = 0 deactivate PTC thermistor mode for over load relay - not used
\(\mathrm{H} 27=1.60 \mathrm{~V}\) PTC thermistor trip level for overload relay - not used
\(\mathrm{H} 28=0.0 \mathrm{~Hz}\) droop rate between motors driving a common load - nnot used
H29 = not used
\(\mathrm{H} 30=0\) disable serial communications
H31 = 1 RS-485 address - not used
H32 = 2 on comm error retry for H33 set time before stop - not used
H33 = 2.0 S retry time for H32 - not used
H34 \(=1\) set baud rate to 9600 - not used
H35 \(=0\) set word length to 8 bits - not used
H36 = 0 set parity to none - not used
H37 = 0 set 2 stop bits - not used
```

H38＝ 0 disable comm failure detection－not used
H39 $=0.01$ S response time to host comm－not used
A01 $=60 \mathrm{~Hz}$ motor 2 max frequency - not used
A02 $=60 \mathrm{~Hz}$ motor 2 base frequency－not used
A03 $=230 \mathrm{~V}$ motor 2 rated voltage－not used
A04 $=230 \mathrm{~V}$ motor 2 max．voltage - not used
A05 $=2.0$ motor 2 torque boost－not used
A06 $=1$ motor 2 overload relay mode selsec－not used
A07＝default（18．60）motor 2 overload relay set level - not used
A08 $=5$ motor 2 overload relay delay time－not used
A09 $=0$ disable motor 2 torque vector control－not used
A10 $=4$ motor 2 number of poles - not used
A11＝default（7．5）motor 2 rated torque－not used
A12 $=$ default（18．60）motor 2 rated current - not used
A13 $=0$ disable motor 2 start up motor tuning－not used
A14 $=0$ disable motor 2 continuous motor tuning－not used
A15＝default（6．23）motor 2 no load current－not used
A16 $=$ default（2．65）motor 2 motor constant - not used
A17＝default（28．91）motor 2 impedance matching－not used
A18 $=0.00 \mathrm{~Hz}$ motor 2 slip compensation－not used

Function values for the ABB inverters ACS501－00X－X V－S part number 138310X：
Never used or programmed．

Connections：
13830XX＝Fuji／GE inverters FRN00 G9D－UX／D55XXX
13036XX＝Magnetek／IDM inverters GPD－XXX／PC3 380－480V
13037XX＝Magnetek／IDM inverters GPD－XXX／PC3 200－240V
13798XX＝IDM mini－inverters CIMR－PCU－XXXX
14514XX＝IDM mini－inverters CIMR－J7CU－XXXX
14514XX＝AC Tech series SCF
$1465101=$ Fuji $/$ GE inverters 6KP11XXXXXX1A1／D66XXX
Wire number Vs Connection：

			$\begin{gathered} \stackrel{-}{\omega} \\ \stackrel{y}{c} \end{gathered}$	$\underset{\text { ভ }}{\stackrel{\rightharpoonup}{\prime}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{亏} \\ & \stackrel{1}{4} \end{aligned}$	$\begin{aligned} & \underset{\rightharpoonup}{訁} \\ & \dot{ভ} \end{aligned}$	$\begin{aligned} & \text { 訁े } \\ & \text { ஸे } \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \frac{\hat{N}}{\mathbf{n}} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$
13830XX	L1	L2	L3	PE	U	V	W	RST	FWD	$\begin{aligned} & \text { CM+ } \\ & \text { TMR } \end{aligned}$	11	12	Y3	CME
13036XX	L1	L2	L3	GND	T1	T2	T3	3	1	6	11＋G	8	FLTA	FLTC
13037XX	L1	L2	L3	GND	T1	T2	T3	3	1	6	11＋G	8	FLTA	FLTC
13798XX	L1	L2	L3	PE	T1	T2	T3	3	1	6	11	8	FLTA	FLTC
14514XX－IDM	L1	L2	L3	PE	T1	T2	T3	S3	S1	SC	FC	FR	MA	MC
14514XX－AC Tech	L1	L2	L3	PE	T1	T2	T3	－	1\＆12	2	2	5	15	2
1465101	L1	L2	L3	PE	U	V	W	X6	FWD	CM	11	12	Y3	CMY

\qquad

20

T0：41CB 2
$\underset{\substack{\text { SE } \\ 40800500}}{\operatorname{NvG}} \quad 22$

TO：43Св 23
（G）\＃10AWG MTW L1D

FOR OPTIONAL FULL SPEED
COOLING FAN OPERATION WITH INVERTER

OR IDM INVERTER FAN SPEED CONTROL
$\xrightarrow{\text { SMF } 400 \mathrm{VC}}{ }^{\text {E／}}$ IMF 400V V°

\qquad ${ }_{8-\mathrm{CO}}^{\stackrel{\Delta E}{\mid E}}$
 \square

复 $^{141 \mathrm{CBL}}$ 3E -SEE ANGG Na ．
\square
\square

27

28

2933

24

30
\square

$$
\begin{equation*}
32 \tag{32}
\end{equation*}
$$

34
\square

23
I

$$
2
$$

$$
34
$$

$$
\rightarrow_{\rightarrow} \rightarrow_{\llcorner 2 E}^{L S E}
$$

NOTES：
1．）CORRECT MOTOR ROTATION MUST BE OBSERVED FOR EACH GROUP OF 3 PHASE MOTORS．
LOOKING AT BACK SIDE OF MOTOR，SHAFT SEOULD TURN CCW．IF NOT，SWAP TWO

